EPSS C179 / 279 Search for Extraterrestrial Intelligence: Theory and Applications Spring 2021 WF 1:00–3:00 pm – Remote Learning

Course Description:

The Search for Extraterrestrial Intelligence (SETI), also known as the search for technosignatures, is based on a number of astronomical, mathematical, statistical, and computational principles. This course covers fundamental concepts in these disciplines in the context of SETI: abundance and architecture of extrasolar planetary systems; radio astronomy, including wave propagation and dispersion; signal processing, including sampling theory and Fourier transforms; random processes, including Gaussian statistics, and algorithm development. The course is primarily based on a collaborative project: students design an observational program, acquire data with a large telescope, develop algorithms to analyze the data, and write a report/article on the results.

Lectures (max. two hours/week) are supplemented with computer lab modules (min. two hours/week) that primarily rely on Python, Jupyter, and GitHub.

Instructor: Professor Jean-Luc Margot (jlm@epss.ucla.edu)

Teaching assistant volunteers:

Paul Pinchuk (ppinchuk@physics.ucla.edu) and Robert Geil (rgeil@ucla.edu)

Textbook:

There is no required textbook. Optional textbooks include:

Bracewell, R. The Fourier Transform and Its Applications, McGraw-Hill Press, W. Numerical Recipes in C: The Art of Scientific Computing Bevington, P. Data Reduction and Error Analysis for the Physical Sciences Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Condon, J. and Ransom, S. <u>Essential Radio Astronomy</u>

EPSS C179 / 279 website:

https://ccle.ucla.edu/course/view/21S-EPSSCIC179-1

Earth, Planetary, and Space Sciences C179 / 279: SETI – Spring 2020

Date	Lec.	Title	Lab.
W Mar. 31		Introduction, motivation, syllabus, remote learning guide	NB01 Python, Jupyter
F Apr. 02	L01	Radio astronomy fundamentals, recent results	Astropy
W Apr. 07	L02	Celestial coordinates	NB02 LST, Alt-Az
F Apr. 09		Design of observing program	Alt-Az general
W Apr. 14	L03	Stars, planets, habitable zones	NB03 Pandas
F Apr. 16	L04	Select and order sources	Travel. Salesp.
W Apr. 21	L05	Fourier transform, sampling theorem	NB04 FFT
F Apr. 23	L06	Orbital elements, Doppler variations due to orbits/spins	NB05 Time-Freq
W Apr. 28	L07	Integrated power (shift and add)	Voyager 1
W Apr. 28	3-5 pm	Observing with Green Bank Telescope	
W Apr. 28 F Apr. 30	3-5 pm L08	Observing with Green Bank Telescope Noise statistics	NB06 Statistics
W Apr. 28 F Apr. 30 W May 05	3-5 pm L08 L09	Observing with Green Bank Telescope Noise statistics Relational databases	NB06 Statistics NB07 SQL
W Apr. 28 F Apr. 30 W May 05 F May 07	3-5 pm L08 L09 L10	Observing with Green Bank Telescope Noise statistics Relational databases Filtering techniques	NB06 Statistics NB07 SQL NB08 API
W Apr. 28 F Apr. 30 W May 05 F May 07 W May 12	3-5 pm L08 L09 L10	Observing with Green Bank TelescopeNoise statisticsRelational databasesFiltering techniquesTelecommunication principles, interference	NB06 Statistics NB07 SQL NB08 API Pipeline
W Apr. 28 F Apr. 30 W May 05 F May 07 W May 12 F May 14	3-5 pm L08 L09 L10	Observing with Green Bank Telescope Noise statistics Relational databases Filtering techniques Telecommunication principles, interference Dispersion in interstellar medium	NB06 Statistics NB07 SQL NB08 API Pipeline Pipeline
W Apr. 28 F Apr. 30 W May 05 F May 07 W May 12 F May 14 W May 19	3-5 pm L08 L09 L10	Observing with Green Bank Telescope Noise statistics Relational databases Filtering techniques Telecommunication principles, interference Dispersion in interstellar medium Natural vs. artificial signals	NB06 Statistics NB07 SQL NB08 API Pipeline Pipeline Pipeline
W Apr. 28 F Apr. 30 W May 05 F May 07 W May 12 F May 14 W May 19 F May 21	3-5 pm L08 L09 L10	Observing with Green Bank TelescopeNoise statisticsRelational databasesFiltering techniquesTelecommunication principles, interferenceDispersion in interstellar mediumNatural vs. artificial signalsDistributed and GPU computing	NB06 Statistics NB07 SQL NB08 API Pipeline Pipeline Pipeline Pipeline
W Apr. 28 F Apr. 30 W May 05 F May 07 W May 12 F May 14 W May 19 F May 21 W May 26	3-5 pm L08 L09 L10	Observing with Green Bank Telescope Noise statistics Relational databases Filtering techniques Telecommunication principles, interference Dispersion in interstellar medium Natural vs. artificial signals Distributed and GPU computing Machine learning techniques	NB06 Statistics NB07 SQL NB08 API Pipeline Pipeline Pipeline Pipeline Pipeline
W Apr. 28 F Apr. 30 W May 05 F May 07 W May 12 F May 14 W May 19 F May 21 W May 26 F May 28	3-5 pm L08 L09 L10	Observing with Green Bank Telescope Noise statistics Relational databases Filtering techniques Telecommunication principles, interference Dispersion in interstellar medium Natural vs. artificial signals Distributed and GPU computing Machine learning techniques	NB06 Statistics NB07 SQL NB08 API Pipeline Pipeline Pipeline Pipeline Pipeline
W Apr. 28 F Apr. 30 W May 05 F May 07 W May 12 F May 14 W May 19 F May 21 W May 26 F May 28 W Jun. 2	3-5 pm L08 L09 L10	Observing with Green Bank TelescopeNoise statisticsRelational databasesFiltering techniquesTelecommunication principles, interferenceDispersion in interstellar mediumNatural vs. artificial signalsDistributed and GPU computingMachine learning techniquesFinal project	NB06 Statistics NB07 SQL NB08 API Pipeline Pipeline Pipeline Pipeline Pipeline

LEARNING OUTCOMES

Understand celestial coordinates and compute rise-transit-set times for sources Understand radio astronomy fundamentals including sensitivity and Doppler shift Understand abundance of planets and conditions for planetary habitability Design and implement an observational program for a large radio telescope Implement algorithms in Python to solve scientific problems Perform spectral analysis of time-series data with the Fast Fourier Transform Use Python-based graphical tools to present results of data analysis Understand database concepts and access large database with Python Complete a research project from conception to oral presentation of results

GRADING

Undergraduate students: grading is based on five problem sets (25%) and a final project (75%) that **will not** necessarily require implementation of machine learning, GPU computing, or other advanced CS techniques.

Graduate students: grading is based on five problem sets (25%) and a final project (75%) that **will** require implementation of machine learning, GPU computing, or other advanced CS techniques.

THE FINE PRINT

You are responsible for all material covered in lectures or reading. A PDF version of the lecture notes will be posted on the course web page.

Academic integrity is expected at all times and violations will be reported to the Dean of students. Collaboration between students is never permitted except when explicitly allowed by the instructor.

Title IX prohibits gender discrimination, including sexual harassment, domestic and dating violence, sexual assault, and stalking. Students who have experienced sexual harassment or sexual violence can receive confidential support and advocacy at the CARE Advocacy Office for Sexual and Gender-Based Violence, 1st Floor Wooden Center West, <u>CAREadvocate@caps.ucla.edu</u>, (310) 206-2465. You can also report sexual violence or sexual harassment directly to the University's Title IX Coordinator, 2241 Murphy Hall, <u>titleix@conet.ucla.edu</u>, (310) 206-3417.